📐 अनुपात एवं समानुपात
(Ratio and Proportion)
अनुपात और समानुपात (Ratio and Proportion) गणित का महत्वपूर्ण हिस्सा है, जो संख्याओं, मात्राओं या वस्तुओं के बीच तुलना और संबंध को समझने में मदद करता है। यह विषय प्रतियोगी परीक्षाओं, गणना और व्यापारिक गणनाओं में बेहद जरूरी होता है।
📌 अनुपात (Ratio) की परिभाषा
अनुपात दो समान मात्राओं के बीच तुलना का तरीका है, जिसमें यह दर्शाया जाता है कि पहली मात्रा दूसरी से कितनी गुना या कितनी बार है। अनुपात को “:” चिन्ह से व्यक्त किया जाता है।
सूत्र:
यदि दो संख्याएँ A और B हैं, तो अनुपात = A : B
उदाहरण:
यदि 8 और 12 का अनुपात निकालना है –
8 : 12 = 2 : 3 (क्योंकि 4 से भाग करने पर सरलीकृत अनुपात मिलता है)
📌 समानुपात (Proportion) की परिभाषा
समानुपात तब होता है जब दो अनुपात बराबर होते हैं। यदि दो अनुपात A : B और C : D बराबर हैं, तो इसे A/B = C/D लिखा जाता है।
सूत्र:
यदि A : B = C : D, तो A × D = B × C (क्रॉस मल्टीप्लिकेशन से समानुपात की जांच की जाती है)।
उदाहरण:
यदि 2 : 3 = 4 : 6 है
तो 2 × 6 = 12 और 3 × 4 = 12
दोनों बराबर होने से यह समानुपात है।
🔎 अनुपात और समानुपात के प्रकार
✅ सीधा समानुपात (Direct Proportion):
एक मात्रा बढ़ने पर दूसरी भी उसी अनुपात में बढ़ती है।उदाहरण – दूरी और समय (गति समान हो तो)।
✅ विपरीत समानुपात (Inverse Proportion):
एक मात्रा बढ़ने पर दूसरी घटती है।उदाहरण – मजदूर और समय; मजदूर बढ़ें तो कार्य पूरा करने का समय घटता है।
📚 अनुपात एवं समानुपात के उदाहरण
उदाहरण 1 (अनुपात):
12 और 16 का अनुपात12 : 16 = 3 : 4 (4 से विभाजित करने पर)
उदाहरण 2 (समानुपात):
यदि 5 : 10 = 15 : 305 × 30 = 150 और 10 × 15 = 150
दोनों बराबर, इसलिए यह समानुपात है।
🎯 अनुपात एवं समानुपात का महत्व
✅ अनुपात के जरिए वस्तुओं, संख्याओं की तुलना सरल बनती है।
✅ अनुपात और समानुपात व्यापार, गणना, नक्शे, विज्ञान में जरूरी।
✅ प्रतियोगी परीक्षाओं में निश्चित रूप से पूछा जाता है।
🔢 अनुपात एवं समानुपात पर 5 MCQs
1. 8 और 12 का अनुपात क्या होगा?
A) 2:3B) 3:2
C) 4:5
✅ उत्तर: A) 2:3
2. यदि 3 : 5 = 9 : x हो, तो x का मान होगा –
A) 12B) 15
C) 10
✅ उत्तर: A) 15
3. 20 और 50 का सरल अनुपात क्या होगा?
A) 1:2.5B) 2:5
C) 4:5
✅ उत्तर: B) 2:5
4. 6 : 9 और 10 : 15 समानुपात में हैं या नहीं?
A) हाँB) नहीं
✅ उत्तर: A) हाँ
5. समानुपात की शर्त क्या होती है?
A) A × D = B × CB) A + B = C + D
C) A ÷ B = C × D
✅ उत्तर: A) A × D = B × C
🚀 निष्कर्ष
अनुपात एवं समानुपात (Ratio and Proportion) को समझना हर विद्यार्थी के लिए जरूरी है। यह न सिर्फ गणित बल्कि दैनिक जीवन में भी सामानों की तुलना, योजना बनाने, और व्यापारिक निर्णय में महत्वपूर्ण भूमिका निभाता है। अच्छे अभ्यास से अनुपात और समानुपात के सवालों को तेजी से हल किया जा सकता है।
0 टिप्पणियाँ